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Abstract 

Spurious correlations have been proved to be detrimental to the real-world 
language understanding tasks, where the performance of a model will 
degrade tremendously when the test distribution shifts from the training 
distribution. In this project, we try to investigate the counterfactual-based 
method to mitigate or explain the impact of spurious correlations on text 
classification systems. On two benchmark datasets, we evaluate three 
methods, each of which tries to mitigate the keyword bias, label bias, and 
both respectively. Furthermore, we study multiple model-agnostic 
counterfactual search algorithms and try to provide a qualitative analysis of 
the generated examples to better understand the ground behind the 
decision of the machine learning classifier.  
 

I. Introduction 
Text classification is a vital and prevailing task for the various applications 
of machine learning and natural language processing, such as sentiment 
analysis, topic classification, disinformation detection, .etc. Traditionally, 
people only pay attention to the performance of interpolation, where the 
target test data is assumed to share the same distribution with the training 
data. Simultaneously, with the rising of deep learning, various deep models 
have been proposed to try to boost the accuracy during the inference 
phase. However, more recently, people find that the performance of those 
traditional methods will degrade a lot when applied to extrapolation, a more 
realistic scenario, where there is a so-called distribution shift between the 
training set and test set. Purely based on correlation learning, vanilla 
statistical machine learning models might suffer from undesired spurious 
correlations, thus resulting in biased prediction in the shifted distribution 
domain. For example, if in a sentiment analysis training dataset, compared 
to “straight”, the word “gay” occurs more often with negative labels, the 
model might simply learn the correlation that the text with “gay” should be 
categorized into the negative class whatever the content in the text is.  
 
This phenomenon is evidently undesirable in any text classification system. 
On the other hand, we want our model to learn to predict based merely on 
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the casual attributes of the input text and mitigate the impact of spurious 
correlation as much as possible. In Potential Outcome Framework (POF), 
a classic framework of causal inference, those kinds of spurious 
correlations are usually viewed as “confounding” or “back-door”. To make 
sure that the target model learns the desired causal relationship, the 
counterfactual-based method has emerged as an effective way to 
measure, mitigate and explain the impact of spurious correlations. A 
common way is to modify the words that strongly signify those correlations 
into their antonyms, and test the model.  For example, for a given factual 
sentence with the word “straight”, we modify “straight” into “gay”, and keep 
everything else the same, then it becomes a counterfactual sentence. If 
the model produces the same output for all the factual and counterfactual 
sentences, then we can say this model is robust to this spurious 
correlation, “gay” and “straight”. This intuitive method has been proved 
effective, and subsequently, many more advanced approaches have been 
proposed based on this framework, among which, three methods will be 
further investigated in this project. 
 
Furthermore, for a case study, we deploy a counterfactual-example-based 
framework to explain the prediction of a classifier that judges whether a 
person has an annual income greater or less than 50K given his/her 
personal information. Each person is depicted by a set of text attributes, 
and the machine learning classifier is trained. Using different model-
agnostic methods as well as gradient-based methods, we produce 
counterfactuals that are both feasible and versatile with their attributes. 
Through several implementations, we find that the ML model recognizes 
the hidden correlations between attributes and hidden bias in the data. 
Moreover, we produce a causal importance map of all those attributes and 
find out which features have a larger impact on the model than others. 
 
Overall, in this project, we try to investigate the existing counterfactual-
based methods with two focuses: 

1) How to use counterfactuals to mitigate spurious correlations? 
2) How to use counterfactuals to explain the output of a given model? 

 
 
 



II. Related Work 
1) Spurious Correlation in Machine Learning 

Spurious correlations are problematic and could be introduced in 
many ways. In [4], researchers show that bias towards gender, race, 
etc. originating from training data imbalances can be amplified by 
deep models like CNN or RNN. Besides that, data leakage [5] and 
distribution shift between training data and testing data [6] are 
particularly challenging and hard to detect as they introduce 
spurious correlations during model training and hurt model 
performance when deployed. [7] shows that bias and spurious 
correlations vary from task to task, and when multiple such 
correlations occur, it is hard to mitigate all of them simultaneously, 
and a trade-off between different correlations is worth further 
investigating. 

2) Causal Inference to Mitigate Impact of Spurious Correlation 
For this project, we investigate three methods. CLP [1] is the first 
work that bridges the gap between fairness and robustness. It aims 
at mitigating the impact of word-level keyword bias (e.g., “gay” vs 
“straight”). Its main contribution is proposing a counterfactual 
augmentation mechanism to generate the counterfactuals and a 
regularizer to push the model to yield similar results for factuals and 
counterfactuals. On the other hand, AGC [3] designs a different 
counterfactual augmentation mechanism that generates 
counterfactuals with different labels as the factuals. This method can 
be used to tackle document-level label bias, where the number of 
data samples in each category differs significantly from others. 
Furthermore, Corsair [2] proposes a framework for mitigating both 
label bias and keyword bias at the same time. Notably, this method 
tries to debias the model during the evaluation phase. Namely, a 
biased model is directly obtained after training on the biased 
dataset. Then, during inference, given a factual input document, 
CORSAIR imagines its two counterfactual counterparts to distill and 
mitigate the two biases captured by the poisonous model. 

3) Explaining Classifiers through Counterfactual Examples 
An example-based counterfactual explanation is one way to interpret 
the ML model. Kim et al. [10] proposed a novel example-based 
explanation framework that uses both prototypes and criticisms from 



the original instances. Recently, counterfactual explanations have 
started to be used as a perturbation of the given input to generate 
different outputs using the same model. Watcher et al. [11] propose 
a formula to generate counterfactuals. This model induces the 
counterfactual to have a different output to the original instance, as 
well as keep proximity between them to minimize transformation of 
the original data. 
 

 
III. Model Description 

1) CLP 
Suppose f is the target text classification model, g is a counterfactual 
generation function. In this paper, g is to change some pre-defined 
words into their antonyms and keep others the same. Now, we have: 

 
Where J is the original loss function like cross-entropy loss, and the 
latter term is the regularizer that pushes the model to generate 
similar output for factual and counterfactual data, and λ is a factor to 
balance the importance between them. 

2) AGC 
a. Find out the top causal term t (BERT) 
b. Change it to its antonym 
c. Use it as the augmented data 
d. Train the model with original data and augment data 

 
3) Corsair  

    



 
a. Train a biased model on the biased dataset 
b. Label Bias Distillation: xˆ denotes the imagined fully-

blindfolded counterfactual document where all words in the 
test document x are consistently masked  

 
c. Keyword Bias Distillation: x˜ denotes another counterfactual 

document where the main-content words in a test document x 
are masked while other context words are not 

 

 
d. Bias Removal: 

 
    

4) DiCE Framework 

 

DiCE [12] is an open-source framework that provides an interface to 
generate various counterfactual examples for any ML model. In 
addition to proximity (minimal changes) and diversity, DiCE controls 
the feasibility of the counterfactuals automatically. This means it 
ensures not only that certain values are feasible, but also the 
changes indicated by a counterfactual are feasible for each 
individual. For example, 20 years may be a feasible value for Age 
feature, but changing a person's age from 22 to 20 is not feasible. 



To make the changes in a counterfactual example feasible, we 
specified the possible ranges for continuous features and possible 
values for categorical features.  

Given an instance x and a trained machine learning model, DiCE 
generates a set of k counterfactual examples, {c1, c2, . . . , ck }, 
such that all of them have a different output from x. The instance x 
and all counterfactual examples {c1, c2, . . . , ck } are d-dimensional. 
We further describe the instances and generated examples in the 
experiment section. 

5) Model-agnostic counterfactual generation methods 
a. Random Sampling 

Random Sampling is a simple and naive approach to 
generating counterfactual explanations. It randomly changes 
feature values of the instance of interest and stops when the 
desired output is predicted. 

b. Genetic Algorithm 

Genetic algorithm is one popular method in artificial 
intelligence to solve an optimization problem. Given a 
population of candidate solutions, this algorithm keeps 
generating the next-generation population through two genetic 
operators, crossover (or recombination) and mutation. A 
recent study [14] shows that genetic algorithms perform 
efficiently for counterfactual explanations. When it is used to 
generate counterfactuals, it searches the space of 
counterfactuals by prioritizing those that have fewer changes. 
Starting from a population consisting of just the given entity 𝒙𝒙, 
the algorithm repeatedly updates the population by applying 
the operations crossover and mutation and then selecting the 
best counterfactuals for the new generation. It stops when it 
reaches a sufficient number of examples on which the 
classifier returns the good (or desired) outcome. 

 



c. Querying K-D Tree 

K-D tree (or k-dimensional tree) [13] is a binary tree-based 
data representation in a k-dimensional space. Every node has 
a k-dimensional point, and every non-leaf node serves as a 
splitting hyperplane that divides the space into two parts. 
Therefore, the left subtree of that node would reside in the left 
side of this hyperplane, and vice versa. 

When the K-D tree is used to generate counterfactuals, each 
class i is represented by a separate k-d tree using the 
instances having class label i. For each class-specific k-d tree, 
the Euclidean distance between instance x and the k-nearest 
item in the tree is calculated. The closest item across all 
classes except for the class of x becomes the class prototype 
and becomes part of the loss function. 

 
IV. Experiment 

1) Mitigate Impact from Spurious Correlation 
a. Experiment Settings   

We test the three methods on HyperPartisan [8] (HYP for short) and 
Twitter [9] (TWI for short) (two benchmark text binary classification 
datasets). The baseline we deploy here is TextCNN for all three methods. 
We use the widely-used macro-F1 metric, which is the balanced harmonic 
mean of precision and recall. Furthermore, macro-F1 is more suitable than 
micro-F1 to reflect the extent of the dataset biases, especially for the 
highly-skewed cases, since macro-F1 is strongly influenced by the 
performance in each category (i.e., category sensitive) but micro-F1 easily 
gives equal weight over all the documents (i.e., category-agnostic)  

 
b. Comparable Results: 

Accordingly, for these two specific datasets we choose, Corsair has the 
best performance. We can see that compared to the other two methods, 
CLP has lower scores. This is because CLP highly relies on manually 
collected word pairs like “straight” and “gay”. If for some data, words in the 
collected word pairs do not show up that often, for example, never occur in 
the dataset, then this method will not work. Also, CLP and AGC only 
consider one kind of bias, either keyword bias or label bias. On the 



contrary, Corsair takes both into account, and it does not require any extra 
manual cost of data collection, selection, and annotation. So it outperforms 
all other methods. 
 

Methods HYP (%) TWI (%) 

TextCNN 40.48 65.94 

TextCNN + CLP 41.29 66.18 

TextCNN + AGC 45.85 67.81 

TextCNN + Corsair 46.68 68.83 

                      Table 1. Result of the three methods on the two benchmark datasets HYP and TWI 
 

2) Explanation of the model through diverse Counterfactual examples 
a. Dataset 

We used transformed tabular text data Adult dataset [15] called 
Adult-Income for generating counterfactuals. The adult dataset 
consists of 26,048 instances and each has 8 attributes. Given the 
attributes of each instance, machine learning models (Random 
Forest Classifier in this experiment) are trained to predict if the 
income is over 50,000 or not. We used tabular data instead of text 
data to observe differences between each method and better 
analyze the generated counterfactuals. A detailed description of 
each attribute is as follows. 

age workclass education Marital_st
atus 

occupation race gender Hours_per
_week 

income 

28 Private Bachelors Single White-
Collar 

White female 60 0 

30 Self-
Employed 

Assoc Married Profession
al 

White Male 65 1 

32 Private Some-
college 

Married White-
Collar 

White male 50 0 

    Table 2. Examples of Adult-Income Instances 

 



b. Generating Counterfactual Examples 

In this experiment, we show that the set of counterfactuals explain 
the given machine learning model, especially its local decision 
boundary to predict. Also, we observe there are several differences 
between various counterfactual generation methods. 

We first choose a trained classification model 
RandomForestClassifier. This model can be substituted for other text 
classifiers. Then we produce several representative counterfactual 
examples using the three model-agnostic methods: random search, 
genetic search, and KD tree search (Table 1). We could understand 
the result explanations through the generated set of counterfactuals. 
First, most of the counterfactuals are changed in a reasonable way 
that we can understand with common sense. For example, studying 
for an advanced degree can lead to a higher income. But it also 
shows less obvious counterfactuals such as getting married (in 
addition to finishing professional school and increasing hours 
worked per week) or working less for a higher income. These 
counterfactuals are likely generated due to underlying correlations in 
the dataset. In some specific regions, married people have higher 
income and some rich people like landlords work shorter than 
employees. 

We also observe hidden social bias under the data. When we 
release the restriction of some attributes, like gender or race from 
unchangeable to changeable, some counterfactuals of a given 
instance induce the instance to become a man or to become a 
white. This shows that white people or men have a higher income 
than other races or women. It indicates the bias in the dataset 
contaminates the classifier, and the counterfactual examples reveal 
it. 

We also try to perform additional evaluations and find the differences 
between the methods. Since we restrict some of the attributes to 
unchangeable and the number of counterfactuals generated, all the 
generated examples are feasible. However, there is a significant 
difference in the runtimes of each method searching for the 
counterfactuals. Since random search does not use loss function to 



find desired output, running time is much faster than the other two 
methods. The speed of random sampling is 7.48 iteration/s, whereas 
genetic search and KD tree search take 1.24 iteration/s and 2.83 
iteration/s each. This gap is larger when compared to the gradient-
based method like Tensorflow or PyTorch neural networks.  

 
Method age workclass education Marital_status occupation race gender hours_per_week income 

Query 29 Private HS-grad Married Blue-Collar White female 38 0 

Random - Masters - - Other/Unkno
wn 

- - - 1 

Genetic - Masters - - Professional - - - 1 

KD tree - - Assoc - Service - - - 1 

Tensorflo
w 

- - Doctorate - Service - - 26 1 

PyTorch - Self-Employed Masters - Professional - - - 1 

Table 3. Query instance x and generated counterfactuals 

Furthermore, we measure the importance of each attribute when the 
model-agnostic methods generate counterfactuals. Table 4 shows 
the global importance scores of each attribute estimated by 
aggregating the scores over individual inputs. These scores are 
computed for a given query instance by summarizing a set of 
counterfactual examples around the instance. Results show that 
each approach has a different perspective to understand the model 
by focusing on different attributes to generate counterfactuals. For 
example, the “occupation” attribute is important when the KD tree 
explains the model, but not important for Random search. 
Considering that “occupation” and “education” attributes to change 
the most in Table 3, this indicates that these attributes highly affect 
the decision of the classifier. 

 

 



 

 
Method education occupation marital_status age hours_per_w

eek 
workclass race gender 

Random 0.635 0.29 0.285 0.25 0.195 0.17 0.135 0.07 

Genetic 0.7 
 

0.685 0.38 0.42 
 

0.11 0.255 
 

0.13 0.135 

KD Tree 0.715 0.8 0.39 0.07 0.065 0.37 0.165 0.265 

Table 4. Global feature importance scores 
 

V. Future Works 
Currently, all the state-of-the-art methods we mentioned above omit one 
important factor when applying counterfactual methods to the text 
classification task, that the counterfactual and factual pairs should share 
the same or similar distribution. In other words, the two sentences should 
be semantically similar. All these works directly change the word/token in 
the original sentence and assume that, with only one word modified, the 
new sentence will share the same semantics. But no proof has been given 
so far. Fixing this issue would be meaningful work.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Reference 
 
[1] Garg, Sahaj, et al. "Counterfactual fairness in text classification through robustness." Proceedings of 
the 2019 AAAI/ACM Conference on AI, Ethics, and Society. 2019. 
[2] Qian, Chen, et al. "Counterfactual Inference for Text Classification Debiasing." Proceedings of the 59th 
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint 
Conference on Natural Language Processing (Volume 1: Long Papers). 2021. 
[3] Wang, Zhao, and Aron Culotta. "Robustness to Spurious Correlations in Text Classification via 
Automatically Generated Counterfactuals." Proceedings of the AAAI Conference on Artificial Intelligence. 
Vol. 35. No. 16. 2021. 
[4] Kiritchenko, Svetlana, and Saif M. Mohammad. "Examining gender and race bias in two hundred 
sentiment analysis systems." arXiv preprint arXiv:1805.04508 (2018). 
[5] Roemmele, Melissa, Cosmin Adrian Bejan, and Andrew S. Gordon. "Choice of plausible alternatives: 
An evaluation of commonsense causal reasoning." 2011 AAAI Spring Symposium Series. 2011. 
[6] Quiñonero-Candela, Joaquin, et al., eds. Dataset shift in machine learning. Mit Press, 2009. 
[7] Mehrabi, Ninareh, et al. "A survey on bias and fairness in machine learning." ACM Computing Surveys 
(CSUR) 54.6 (2021): 1-35. 
[8] Kiesel, Johannes, et al. "Semeval-2019 task 4: Hyperpartisan news detection." Proceedings of the 
13th International Workshop on Semantic Evaluation. 2019. 
[9] Huang, Xiaolei, et al. "Examining patterns of influenza vaccination in social media." Workshops at the 
thirty-first AAAI conference on artificial intelligence. 2017. 
[10] Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. "Examples are not enough, learn to criticize! 
criticism for interpretability." Advances in neural information processing systems 29 (2016). 
[11] Wachter, Sandra, Brent Mittelstadt, and Chris Russell. "Counterfactual explanations without opening 
the black box: Automated decisions and the GDPR." Harv. JL & Tech. 31 (2017): 841. 
[12] Mothilal, Ramaravind K., Amit Sharma, and Chenhao Tan. "Explaining machine learning classifiers 
through diverse counterfactual explanations." Proceedings of the 2020 Conference on Fairness, 
Accountability, and Transparency. 2020. 
[13] Bentley, Jon Louis. "Multidimensional binary search trees used for associative searching." 
Communications of the ACM 18.9 (1975): 509-517. 
[14] Schleich, Maximilian, et al. "GeCo: Quality counterfactual explanations in real time." arXiv preprint 
arXiv:2101.01292 (2021). 
[15] Kohavi, Ronny, and Barry Becker. "Uci machine learning repository: adult data set." Avaliable: 
https://archive. ics. uci. edu/ml/machine-learning-databases/adult (1996). 
 
 
 
 
 
 
 
 
 
 



 
 

Appendix 
 

Github Repo Link: https://github.com/Zhen-Tan-dmml/CSE-472-Project-2.git 


