
Understanding Text Classifiers with Counterfactual Explanation
 --- By Zhen Tan and Nayoung Kim

Abstract

Spurious correlations have been proved to be detrimental to the real-world
language understanding tasks, where the performance of a model will
degrade tremendously when the test distribution shifts from the training
distribution. In this project, we try to investigate the counterfactual-based
method to mitigate or explain the impact of spurious correlations on text
classification systems. On two benchmark datasets, we evaluate three
methods, each of which tries to mitigate the keyword bias, label bias, and
both respectively. Furthermore, we study multiple model-agnostic
counterfactual search algorithms and try to provide a qualitative analysis of
the generated examples to better understand the ground behind the
decision of the machine learning classifier.

I. Introduction
Text classification is a vital and prevailing task for the various applications
of machine learning and natural language processing, such as sentiment
analysis, topic classification, disinformation detection, .etc. Traditionally,
people only pay attention to the performance of interpolation, where the
target test data is assumed to share the same distribution with the training
data. Simultaneously, with the rising of deep learning, various deep models
have been proposed to try to boost the accuracy during the inference
phase. However, more recently, people find that the performance of those
traditional methods will degrade a lot when applied to extrapolation, a more
realistic scenario, where there is a so-called distribution shift between the
training set and test set. Purely based on correlation learning, vanilla
statistical machine learning models might suffer from undesired spurious
correlations, thus resulting in biased prediction in the shifted distribution
domain. For example, if in a sentiment analysis training dataset, compared
to “straight”, the word “gay” occurs more often with negative labels, the
model might simply learn the correlation that the text with “gay” should be
categorized into the negative class whatever the content in the text is.

This phenomenon is evidently undesirable in any text classification system.
On the other hand, we want our model to learn to predict based merely on

mailto:ztan36@asu.edu
mailto:nkim48@asu.edu

the casual attributes of the input text and mitigate the impact of spurious
correlation as much as possible. In Potential Outcome Framework (POF),
a classic framework of causal inference, those kinds of spurious
correlations are usually viewed as “confounding” or “back-door”. To make
sure that the target model learns the desired causal relationship, the
counterfactual-based method has emerged as an effective way to
measure, mitigate and explain the impact of spurious correlations. A
common way is to modify the words that strongly signify those correlations
into their antonyms, and test the model. For example, for a given factual
sentence with the word “straight”, we modify “straight” into “gay”, and keep
everything else the same, then it becomes a counterfactual sentence. If
the model produces the same output for all the factual and counterfactual
sentences, then we can say this model is robust to this spurious
correlation, “gay” and “straight”. This intuitive method has been proved
effective, and subsequently, many more advanced approaches have been
proposed based on this framework, among which, three methods will be
further investigated in this project.

Furthermore, for a case study, we deploy a counterfactual-example-based
framework to explain the prediction of a classifier that judges whether a
person has an annual income greater or less than 50K given his/her
personal information. Each person is depicted by a set of text attributes,
and the machine learning classifier is trained. Using different model-
agnostic methods as well as gradient-based methods, we produce
counterfactuals that are both feasible and versatile with their attributes.
Through several implementations, we find that the ML model recognizes
the hidden correlations between attributes and hidden bias in the data.
Moreover, we produce a causal importance map of all those attributes and
find out which features have a larger impact on the model than others.

Overall, in this project, we try to investigate the existing counterfactual-
based methods with two focuses:

1) How to use counterfactuals to mitigate spurious correlations?
2) How to use counterfactuals to explain the output of a given model?

II. Related Work
1) Spurious Correlation in Machine Learning

Spurious correlations are problematic and could be introduced in
many ways. In [4], researchers show that bias towards gender, race,
etc. originating from training data imbalances can be amplified by
deep models like CNN or RNN. Besides that, data leakage [5] and
distribution shift between training data and testing data [6] are
particularly challenging and hard to detect as they introduce
spurious correlations during model training and hurt model
performance when deployed. [7] shows that bias and spurious
correlations vary from task to task, and when multiple such
correlations occur, it is hard to mitigate all of them simultaneously,
and a trade-off between different correlations is worth further
investigating.

2) Causal Inference to Mitigate Impact of Spurious Correlation
For this project, we investigate three methods. CLP [1] is the first
work that bridges the gap between fairness and robustness. It aims
at mitigating the impact of word-level keyword bias (e.g., “gay” vs
“straight”). Its main contribution is proposing a counterfactual
augmentation mechanism to generate the counterfactuals and a
regularizer to push the model to yield similar results for factuals and
counterfactuals. On the other hand, AGC [3] designs a different
counterfactual augmentation mechanism that generates
counterfactuals with different labels as the factuals. This method can
be used to tackle document-level label bias, where the number of
data samples in each category differs significantly from others.
Furthermore, Corsair [2] proposes a framework for mitigating both
label bias and keyword bias at the same time. Notably, this method
tries to debias the model during the evaluation phase. Namely, a
biased model is directly obtained after training on the biased
dataset. Then, during inference, given a factual input document,
CORSAIR imagines its two counterfactual counterparts to distill and
mitigate the two biases captured by the poisonous model.

3) Explaining Classifiers through Counterfactual Examples
An example-based counterfactual explanation is one way to interpret
the ML model. Kim et al. [10] proposed a novel example-based
explanation framework that uses both prototypes and criticisms from

the original instances. Recently, counterfactual explanations have
started to be used as a perturbation of the given input to generate
different outputs using the same model. Watcher et al. [11] propose
a formula to generate counterfactuals. This model induces the
counterfactual to have a different output to the original instance, as
well as keep proximity between them to minimize transformation of
the original data.

III. Model Description

1) CLP
Suppose f is the target text classification model, g is a counterfactual
generation function. In this paper, g is to change some pre-defined
words into their antonyms and keep others the same. Now, we have:

Where J is the original loss function like cross-entropy loss, and the
latter term is the regularizer that pushes the model to generate
similar output for factual and counterfactual data, and λ is a factor to
balance the importance between them.

2) AGC
a. Find out the top causal term t (BERT)
b. Change it to its antonym
c. Use it as the augmented data
d. Train the model with original data and augment data

3) Corsair

a. Train a biased model on the biased dataset
b. Label Bias Distillation: xˆ denotes the imagined fully-

blindfolded counterfactual document where all words in the
test document x are consistently masked

c. Keyword Bias Distillation: x˜ denotes another counterfactual

document where the main-content words in a test document x
are masked while other context words are not

d. Bias Removal:

4) DiCE Framework

DiCE [12] is an open-source framework that provides an interface to
generate various counterfactual examples for any ML model. In
addition to proximity (minimal changes) and diversity, DiCE controls
the feasibility of the counterfactuals automatically. This means it
ensures not only that certain values are feasible, but also the
changes indicated by a counterfactual are feasible for each
individual. For example, 20 years may be a feasible value for Age
feature, but changing a person's age from 22 to 20 is not feasible.

To make the changes in a counterfactual example feasible, we
specified the possible ranges for continuous features and possible
values for categorical features.

Given an instance x and a trained machine learning model, DiCE
generates a set of k counterfactual examples, {c1, c2, . . . , ck },
such that all of them have a different output from x. The instance x
and all counterfactual examples {c1, c2, . . . , ck } are d-dimensional.
We further describe the instances and generated examples in the
experiment section.

5) Model-agnostic counterfactual generation methods
a. Random Sampling

Random Sampling is a simple and naive approach to
generating counterfactual explanations. It randomly changes
feature values of the instance of interest and stops when the
desired output is predicted.

b. Genetic Algorithm

Genetic algorithm is one popular method in artificial
intelligence to solve an optimization problem. Given a
population of candidate solutions, this algorithm keeps
generating the next-generation population through two genetic
operators, crossover (or recombination) and mutation. A
recent study [14] shows that genetic algorithms perform
efficiently for counterfactual explanations. When it is used to
generate counterfactuals, it searches the space of
counterfactuals by prioritizing those that have fewer changes.
Starting from a population consisting of just the given entity 𝒙𝒙,
the algorithm repeatedly updates the population by applying
the operations crossover and mutation and then selecting the
best counterfactuals for the new generation. It stops when it
reaches a sufficient number of examples on which the
classifier returns the good (or desired) outcome.

c. Querying K-D Tree

K-D tree (or k-dimensional tree) [13] is a binary tree-based
data representation in a k-dimensional space. Every node has
a k-dimensional point, and every non-leaf node serves as a
splitting hyperplane that divides the space into two parts.
Therefore, the left subtree of that node would reside in the left
side of this hyperplane, and vice versa.

When the K-D tree is used to generate counterfactuals, each
class i is represented by a separate k-d tree using the
instances having class label i. For each class-specific k-d tree,
the Euclidean distance between instance x and the k-nearest
item in the tree is calculated. The closest item across all
classes except for the class of x becomes the class prototype
and becomes part of the loss function.

IV. Experiment

1) Mitigate Impact from Spurious Correlation
a. Experiment Settings

We test the three methods on HyperPartisan [8] (HYP for short) and
Twitter [9] (TWI for short) (two benchmark text binary classification
datasets). The baseline we deploy here is TextCNN for all three methods.
We use the widely-used macro-F1 metric, which is the balanced harmonic
mean of precision and recall. Furthermore, macro-F1 is more suitable than
micro-F1 to reflect the extent of the dataset biases, especially for the
highly-skewed cases, since macro-F1 is strongly influenced by the
performance in each category (i.e., category sensitive) but micro-F1 easily
gives equal weight over all the documents (i.e., category-agnostic)

b. Comparable Results:

Accordingly, for these two specific datasets we choose, Corsair has the
best performance. We can see that compared to the other two methods,
CLP has lower scores. This is because CLP highly relies on manually
collected word pairs like “straight” and “gay”. If for some data, words in the
collected word pairs do not show up that often, for example, never occur in
the dataset, then this method will not work. Also, CLP and AGC only
consider one kind of bias, either keyword bias or label bias. On the

contrary, Corsair takes both into account, and it does not require any extra
manual cost of data collection, selection, and annotation. So it outperforms
all other methods.

Methods HYP (%) TWI (%)

TextCNN 40.48 65.94

TextCNN + CLP 41.29 66.18

TextCNN + AGC 45.85 67.81

TextCNN + Corsair 46.68 68.83

 Table 1. Result of the three methods on the two benchmark datasets HYP and TWI

2) Explanation of the model through diverse Counterfactual examples
a. Dataset

We used transformed tabular text data Adult dataset [15] called
Adult-Income for generating counterfactuals. The adult dataset
consists of 26,048 instances and each has 8 attributes. Given the
attributes of each instance, machine learning models (Random
Forest Classifier in this experiment) are trained to predict if the
income is over 50,000 or not. We used tabular data instead of text
data to observe differences between each method and better
analyze the generated counterfactuals. A detailed description of
each attribute is as follows.

age workclass education Marital_st
atus

occupation race gender Hours_per
_week

income

28 Private Bachelors Single White-
Collar

White female 60 0

30 Self-
Employed

Assoc Married Profession
al

White Male 65 1

32 Private Some-
college

Married White-
Collar

White male 50 0

 Table 2. Examples of Adult-Income Instances

b. Generating Counterfactual Examples

In this experiment, we show that the set of counterfactuals explain
the given machine learning model, especially its local decision
boundary to predict. Also, we observe there are several differences
between various counterfactual generation methods.

We first choose a trained classification model
RandomForestClassifier. This model can be substituted for other text
classifiers. Then we produce several representative counterfactual
examples using the three model-agnostic methods: random search,
genetic search, and KD tree search (Table 1). We could understand
the result explanations through the generated set of counterfactuals.
First, most of the counterfactuals are changed in a reasonable way
that we can understand with common sense. For example, studying
for an advanced degree can lead to a higher income. But it also
shows less obvious counterfactuals such as getting married (in
addition to finishing professional school and increasing hours
worked per week) or working less for a higher income. These
counterfactuals are likely generated due to underlying correlations in
the dataset. In some specific regions, married people have higher
income and some rich people like landlords work shorter than
employees.

We also observe hidden social bias under the data. When we
release the restriction of some attributes, like gender or race from
unchangeable to changeable, some counterfactuals of a given
instance induce the instance to become a man or to become a
white. This shows that white people or men have a higher income
than other races or women. It indicates the bias in the dataset
contaminates the classifier, and the counterfactual examples reveal
it.

We also try to perform additional evaluations and find the differences
between the methods. Since we restrict some of the attributes to
unchangeable and the number of counterfactuals generated, all the
generated examples are feasible. However, there is a significant
difference in the runtimes of each method searching for the
counterfactuals. Since random search does not use loss function to

find desired output, running time is much faster than the other two
methods. The speed of random sampling is 7.48 iteration/s, whereas
genetic search and KD tree search take 1.24 iteration/s and 2.83
iteration/s each. This gap is larger when compared to the gradient-
based method like Tensorflow or PyTorch neural networks.

Method age workclass education Marital_status occupation race gender hours_per_week income

Query 29 Private HS-grad Married Blue-Collar White female 38 0

Random - Masters - - Other/Unkno
wn

- - - 1

Genetic - Masters - - Professional - - - 1

KD tree - - Assoc - Service - - - 1

Tensorflo
w

- - Doctorate - Service - - 26 1

PyTorch - Self-Employed Masters - Professional - - - 1

Table 3. Query instance x and generated counterfactuals

Furthermore, we measure the importance of each attribute when the
model-agnostic methods generate counterfactuals. Table 4 shows
the global importance scores of each attribute estimated by
aggregating the scores over individual inputs. These scores are
computed for a given query instance by summarizing a set of
counterfactual examples around the instance. Results show that
each approach has a different perspective to understand the model
by focusing on different attributes to generate counterfactuals. For
example, the “occupation” attribute is important when the KD tree
explains the model, but not important for Random search.
Considering that “occupation” and “education” attributes to change
the most in Table 3, this indicates that these attributes highly affect
the decision of the classifier.

Method education occupation marital_status age hours_per_w

eek
workclass race gender

Random 0.635 0.29 0.285 0.25 0.195 0.17 0.135 0.07

Genetic 0.7

0.685 0.38 0.42

0.11 0.255

0.13 0.135

KD Tree 0.715 0.8 0.39 0.07 0.065 0.37 0.165 0.265

Table 4. Global feature importance scores

V. Future Works
Currently, all the state-of-the-art methods we mentioned above omit one
important factor when applying counterfactual methods to the text
classification task, that the counterfactual and factual pairs should share
the same or similar distribution. In other words, the two sentences should
be semantically similar. All these works directly change the word/token in
the original sentence and assume that, with only one word modified, the
new sentence will share the same semantics. But no proof has been given
so far. Fixing this issue would be meaningful work.

Reference

[1] Garg, Sahaj, et al. "Counterfactual fairness in text classification through robustness." Proceedings of
the 2019 AAAI/ACM Conference on AI, Ethics, and Society. 2019.
[2] Qian, Chen, et al. "Counterfactual Inference for Text Classification Debiasing." Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers). 2021.
[3] Wang, Zhao, and Aron Culotta. "Robustness to Spurious Correlations in Text Classification via
Automatically Generated Counterfactuals." Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. No. 16. 2021.
[4] Kiritchenko, Svetlana, and Saif M. Mohammad. "Examining gender and race bias in two hundred
sentiment analysis systems." arXiv preprint arXiv:1805.04508 (2018).
[5] Roemmele, Melissa, Cosmin Adrian Bejan, and Andrew S. Gordon. "Choice of plausible alternatives:
An evaluation of commonsense causal reasoning." 2011 AAAI Spring Symposium Series. 2011.
[6] Quiñonero-Candela, Joaquin, et al., eds. Dataset shift in machine learning. Mit Press, 2009.
[7] Mehrabi, Ninareh, et al. "A survey on bias and fairness in machine learning." ACM Computing Surveys
(CSUR) 54.6 (2021): 1-35.
[8] Kiesel, Johannes, et al. "Semeval-2019 task 4: Hyperpartisan news detection." Proceedings of the
13th International Workshop on Semantic Evaluation. 2019.
[9] Huang, Xiaolei, et al. "Examining patterns of influenza vaccination in social media." Workshops at the
thirty-first AAAI conference on artificial intelligence. 2017.
[10] Kim, Been, Rajiv Khanna, and Oluwasanmi O. Koyejo. "Examples are not enough, learn to criticize!
criticism for interpretability." Advances in neural information processing systems 29 (2016).
[11] Wachter, Sandra, Brent Mittelstadt, and Chris Russell. "Counterfactual explanations without opening
the black box: Automated decisions and the GDPR." Harv. JL & Tech. 31 (2017): 841.
[12] Mothilal, Ramaravind K., Amit Sharma, and Chenhao Tan. "Explaining machine learning classifiers
through diverse counterfactual explanations." Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency. 2020.
[13] Bentley, Jon Louis. "Multidimensional binary search trees used for associative searching."
Communications of the ACM 18.9 (1975): 509-517.
[14] Schleich, Maximilian, et al. "GeCo: Quality counterfactual explanations in real time." arXiv preprint
arXiv:2101.01292 (2021).
[15] Kohavi, Ronny, and Barry Becker. "Uci machine learning repository: adult data set." Avaliable:
https://archive. ics. uci. edu/ml/machine-learning-databases/adult (1996).

Appendix

Github Repo Link: https://github.com/Zhen-Tan-dmml/CSE-472-Project-2.git

